Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 47(2): 171-178, 2/2014. tab, graf
Article in English | LILACS | ID: lil-699770

ABSTRACT

Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression.


Subject(s)
Animals , Female , Pregnancy , Hernias, Diaphragmatic, Congenital/metabolism , Lung/drug effects , Receptors, Vascular Endothelial Growth Factor/metabolism , Disease Models, Animal , Hernias, Diaphragmatic, Congenital/chemically induced , Hernias, Diaphragmatic, Congenital/embryology , Lung/embryology , Phenyl Ethers , Rats, Sprague-Dawley
2.
Braz. j. med. biol. res ; 43(2): 160-165, Feb. 2010. tab, graf
Article in English | LILACS | ID: lil-538238

ABSTRACT

Babies with gastroschisis have high morbidity, which is associated with inflammatory bowel injury caused by exposure to amniotic fluid. The objective of this study was to identify components of the inflammatory response in the intestine and liver in an experimental model of gastroschisis in rats. The model was surgically created at 18.5 days of gestation. The fetuses were exposed through a hysterotomy and an incision at the right of the umbilicus was made, exposing the fetal bowel. Then, the fetus was placed back into the uterus until term. The bowel in this model had macro- and microscopic characteristics similar to those observed in gastroschisis. The study was conducted on three groups of 20 fetuses each: gastroschisis, control, and sham fetuses. Fetal body, intestine and liver weights and intestine length were measured. IL-1â, IL-6, IL-10, TNF-á, IFN-ã and NF-kappaB levels were assessed by ELISA. Data were analyzed statistically by ANOVA followed by the Tukey post-test. Gastroschisis fetuses had a decreased intestine length (means ± SD, 125 ± 25 vs 216 ± 13.9; P < 0.005) and increased intestine weight (0.29 ± 0.05 vs 0.24 ± 0.04; P < 0.005). Intestine length correlated with liver weight only in gastroschisis fetuses (Pearson’s correlation coefficient, r = 0.518, P = 0.019). There were no significant differences in the concentrations of IL-1â, TNF-á or IFN-ã in the intestine, whereas the concentration of NF-kappaB was increased in both the intestine and liver of fetuses with gastroschisis. These results show that the inflammatory response in the liver and intestine of the rat model of gastroschisis is accompanied by an increase in the amount of NF-kappaB in the intestine and liver.


Subject(s)
Animals , Female , Rats , Cytokines/analysis , Gastroschisis/metabolism , Inflammation Mediators/analysis , Intestines/chemistry , Liver/chemistry , NF-kappa B/metabolism , Disease Models, Animal , Gastroschisis/pathology , Intestines/pathology , Liver/pathology , Rats, Sprague-Dawley
3.
Braz. j. med. biol. res ; 35(1): 99-104, Jan. 2002. ilus, tab
Article in English | LILACS | ID: lil-304201

ABSTRACT

Peripheral nerve ultrastructure was assessed after single or multiple local injections of the intercalating dye ethidium bromide. Thirty-four adult Wistar rats of both sexes were divided into five groups and maintained in a controlled environment with rat chow and water ad libitum throughout the experiment. The experimental animals were injected with 1 æl of 0.1 percent ethidium bromide in 0.9 percent saline into the central third of the left sciatic nerve 1 (group 1), 2 (group 2), 4 (group 3), 6 (group 4) or 8 (group 5) times. In groups 2 to 5 the injections were made at 28-day intervals. Control animals received the same amount of 0.9 percent saline. The animals were killed at different times after injection: group 1 at 7 days (2 rats) and 15 days (2 rats); for groups 2, 3, 4 and 5, all rats were killed 10 days after the last injection and the lesions were investigated by light and transmission electron microscopy. In the acute lesions, intoxicated Schwann cells showed a vacuolated cytoplasm and separation of the sheaths from the axon. Myelin sheaths underwent progressive vesiculation and subsequent segmental demyelination. Myelin debris were withdrawn by macrophages and remyelination by Schwann cells was prominent. With the increase in the number of injections collagen fibers also increased in number and progressively enveloped smaller numbers of remyelinated axons composing new fascicles. Wallerian degeneration of fibers apparently not affected by ethidium bromide was more intense in the nerves from groups 4 and 5. The peripheral nerve repairs itself after demyelinating challenges with a profusion of collagen fibers and new fasciculations. This experimental model is valid to mimic recurrent demyelinating neuropathies


Subject(s)
Animals , Male , Female , Rats , Demyelinating Diseases/chemically induced , Ethidium , Fluorescent Dyes , Sciatic Nerve , Schwann Cells , Disease Models, Animal , Demyelinating Diseases/pathology , Microscopy, Electron , Sciatic Nerve/ultrastructure , Rats, Wistar
4.
Braz. j. med. biol. res ; 31(7): 933-6, jul. 1998. ilus
Article in English | LILACS | ID: lil-212871

ABSTRACT

Multiple episodes of blood-brain barrier disruption were induced by sequential intraspinal injections of ethidium bromide. In addition to the barrier disruption, there was toxic demyelination and exposure of myelin components to the immune system. Twenty-seven 3-month-old Wistar rats received 2, 3 or 4 injections of 1 mul of either 0.1 percent ethidium bromide in normal saline (19 rats) or 0.9 percent saline (8 rats) at different levels of the spinal cord. The time intervals between the injections ranged from 28 to 42 days. Ten days after the last injection, all rats were perfused with 2.5 percent glutaraldehyde. The spinal sections were evaluated macroscopically and by light and transmission electron microscopy. All the lesions demonstrated a mononuclear phagocytic infiltrate apparently removing myelin. Lymphocytes were not conspicuos and were found in only 34 percent of the lesions. No perivascular cuffings were detected. In older lesions (38 days and older) they were found only within Virchow-Robin spaces. This result suggests that multiple blood-brain barrier disruptions with demyelination and exposure of myelin components to the immune system were not sufficient to induce an immune-mediated reaction in the central nervous system.


Subject(s)
Animals , Rats , Female , Blood-Brain Barrier/immunology , Demyelinating Diseases/chemically induced , Demyelinating Diseases/immunology , Ethidium/toxicity , Multiple Sclerosis/immunology , Nicotinic Antagonists/toxicity , Spinal Cord/immunology , Central Nervous System/immunology , Central Nervous System/pathology , Demyelinating Diseases/pathology , Ethidium/metabolism , Injections, Spinal , Lymphocytes/ultrastructure , Microscopy, Electron , Multiple Sclerosis/pathology , Myelin Basic Protein , Nicotinic Antagonists/metabolism , Rats, Wistar
5.
Arq. neuropsiquiatr ; 54(2): 331-4, jun. 1996. ilus
Article in English | LILACS | ID: lil-172062

ABSTRACT

The integrity of myelin sheaths is maintained by oligodendrocytes and Schwann cells respectively in the central nervous system (CNS) and in the peripheral nervous system. The process of demyelination consistin of the withdrawal of myelin sheaths from their axons is a characteristic feature of multiple sclerosis, the most common human demyelinating disease. Many experimental models have been designed to study the biology of demyelination and remyelination (repair of the lost myelin) in the CNS, due to the difficulties in studying human material. In the ethidium bromide (an intercalating gliotoxic drug) model of demyelination, CNS remyelination may be carried out by surviving oligodendrocytes and/or by cells differentiated from the primitive cell lines or either by Schwann cells that invade the CNS. However, some factor such as the age of the experimental anmnals, intensity and time of exposure to the intercalating clinical and the topography of the lesions have marked influente on the repair of the tissue.


Subject(s)
Animals , Rats , Humans , Dogs , Schwann Cells/physiology , Demyelinating Diseases/chemically induced , Ethidium/pharmacology , Myelin Sheath/physiology , Oligodendroglia/physiology , Demyelinating Diseases/pathology , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL